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Abstract. We present the pseudostate-close-coupling method using a non-orthogonal Laguerre-L2 basis
function for the calculations of electron-helium scattering. Our method is a frozen-core model of the target
in which one of the electrons is restricted to the 1s He+ orbital, as has been used with great success
recently. We demonstrate its applicability at a range of projectile energies of 5 to 50 eV to scattering from
the ground state to n ≤ 2 states. Generally good agreement with experiments and the other calculations is
obtained with the available differential and total cross-sections. On occasion, there is not good agreement
with experiments, particularly at the forward and backward angles for projectile energy in the range 30 to
50 eV.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.Dp Atomic excitation
and ionization by electron impact

1 Introduction

Collision processes involving helium are important in plas-
mas, lasers, planetary atmospheres, interstellar space, and
many other environments. The measurement of cross-
sections for collisions with helium has been ongoing for
over 40 years. Helium is an ideal choice because of the
central role that it has been used as the simple many elec-
tron atom in many different theoretical and experimental
studies and the fact that it is widely used to normalize
and calibrate results obtained from more complex targets.

The energy range of interest in atomic physics has
been divided into the low (below ionization threshold),
intermediate (between one and ten times the ionization
threshold) and high (more than ten times the ionization
threshold) regions. The ionization threshold of the helium
atom is 24.58 eV.

At low and intermediate energies, the essential physics
that must be contained in any accurate calculation of elec-
tron excitation collision cross-sections is an adequate con-
figuration interaction description of the target and a scat-
tering approximation that includes distortion of the target
by the incident electron, exchange symmetry between the
scattered and orbital electrons, coupling to other nearby
states of the incident and final states, and correlation ef-
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fects due to the temporary formation of a compound state
of the electron-plus-target system [1].

At low energies, the collision has many of the features
of a bound state problem. The wave functions describ-
ing the collision can be accurately represented in terms
of a sum of configurations in a similar way to the con-
figuration interaction expansion used for bound state cal-
culations of atoms and ions. This so-called close-coupling
(CC) expansion was introduced by Massey and Mohr in
the 1930s [2] and developed by Seaton [3] and many oth-
ers since. The essential elements of the method, adapted
to multi-channels scattering are still in use today. Due to
computational constraints approximations concentrated
on low and high incident energies, elastic scattering and
excitation of just the lowest few excited states. Since that
time progress has been steady, with the major handicap
being the available computational resources. The 1990s
saw a rapid increase in the amount of computational power
available in readily affordable workstations and supercom-
puting facilities [4].

For intermediate energies, in principle an infinite num-
ber of bound target states and also continuum states
should be included in the expansion. One approach which
has had some success is based on this expansion where
some of the target states are replaced by suitably cho-
sen pseudostates which are not eigenstates of the target
Hamiltonian. Instead these pseudostates each represent an
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average in some sense over the complete set of target eigen-
states. Another approach which uses expansions of the
electron-plus-target system is the R-matrix method [5].

In terms of testing the basic assumptions of the pseu-
dostate method and understanding its theoretical jus-
tification the work of several groups deserves mention.
Early numerical calculations for the electron-atom prob-
lem utilizing pseudostates were carried out by many lit-
eratures (see, e.g., Burke and Webb [6], Callaway [7],
van Wyngaarden and Walters [8], Bray and Stelbovics [9],
Fursa and Bray [10] and references therein). They demon-
strated that the inclusion of a few pseudostates signifi-
cantly reduced the cross-sections for scattering, bringing
them into better agreement overall with experiment. It
was soon realized that with pseudostates one often has
the problem that spurious resonance features are intro-
duced into the model cross-sections. The observation that
the effect of pseudoresonances decreased with increasing
numbers of pseudostates was a significant factor in the
development of the CC method. Many studies of the con-
vergence properties of pseudostate sets have been under-
taken (see, e.g., Burke and Mitchell [11], Callaway [7],
Bray and Stelbovics [9], Fursa and Bray [10] and references
therein). They considered the model of electron-hydrogen
and electron-helium scattering that treats states of zero
and non-zero orbital angular momentum.

The CC method relies on the reformulation of the
Schrödinger equation into an infinite set of coupled-
channel equations by expanding over the complete set of
target states. The key to the application of this method
and the models it generates depends on the approxi-
mations we make to incorporate the “complete” set of
target states. Since the complete set always includes an
infinite number of discrete excited states as well as non-
normalisable continuum states, approximations will al-
ways have to be made. The difficulty in applying this
approach is that the continuum channels are known to
be very important in the intermediate energy region and
coupling to them must be included with little approxi-
mation. One of way approximate the continuum states
is positive-energy pseudostates formed from the non-
orthogonal Laguerre-L2 basis function. Because there are
an infinite number of discrete and continuum target states,
methods must be devised in order to render the equations
numerically soluble. One method which suggests itself is
to replace the integration over continuum states of the CC
equations by numerical quadrature. This may be achieved
by using the non-orthogonal Laguerre-L2 basis functions.

The use of basis sets to solve the Schrödinger equa-
tion for electron scattering from atomic has long history
in atomic physics. Many types of basis set have been
tried in the past but we focus in the use of the non-
orthogonal Laguerre-L2 basis function which is a rela-
tively new development in two-electron atom. The non-
orthogonal Laguerre-L2 basis function has the property
of “complete” with a relatively small number of basis
set. It is therefore our further goal to apply these meth-
ods to the electron-helium atom scattering to complex
atoms calculations. The primary purpose of this paper

is to demonstrate the pseudostate-close-coupling (PSCC)
method using a non-orthogonal Laguerre-L2 basis function
to the calculation of electron-helium scattering at low-
to-intermediate-energy electron. We use here a detailed
description of the helium target which was presented by
Winata and Kartono [12]. The frozen-core approximation
is used to calculate the helium states. This type of approx-
imate description of the target should be good for scatter-
ing problems in which the dominant reaction mechanism
is by one-particle excitations.

The PSCC method utilizes an expansion of the tar-
get in a complete set of non-orthogonal Laguerre-L2 basis
function which forms a basis for the underlying Hilbert
space. The PSCC method is those calculations for which,
in addition to the treatment of true discrete eigenstates,
there are also a number of square-integrable states with
positive energies. These so-called pseudostates are usu-
ally obtained by diagonalizing the Hamiltonian in a non-
orthogonal Laguerre-L2 basis function. We present here a
detailed formalism of the PSCC method and apply it to
computation of the electron-helium scattering previously
by Stelbovics and Berge [13,14], Bray and Stelbovics [9],
and Fursa and Bray [10].

This paper is structured in the following way. In Sec-
tion 2 we give the elements of the formalism. Calculations
based on the theory model are given in Section 3. Differ-
ential and total cross-sections for excitation of the ground
state to n ≤ 2 states are presented over an energy range
of 5 to 50 eV. In Section 4 we draw conclusions and future
work for our research.

2 Pseudostate-close-coupling formalism

The time independent Schrödinger equation for electron
scattering from atomic helium is

(E − H) |Ψ (x0, x1, x2)〉 = 0, (1)

where the Hamiltonian

H = HT + H0 + V01 + V02, (2)

and the subscript 0 is used to denote the projectile elec-
tron, with the subscripts 1 and 2 indices being used for the
target electrons. The Hamiltonian target operator is HT .
The electron-electron potentials are V01 and V02. To solve
this equation, we write |Ψ〉 as explicitly anti-symmetrized
wave functions utilizing the multi-channel expansion

|Ψ (x0, x1, x2)〉 =

(1 − P01 − P02)
∑ ∫

n

|Φn (x1, x2) fn (x0)〉, (3)

where P01 and P02 are the space (coordinate and spin)
exchange operator. To derive the CC equations we obtain
the (complete) set of target states by solving

HT |Φn〉 = εn |Φn〉 , (4)
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where the completeness relation for the states is ex-
pressed as

I =
∑ ∫

n

|Φn (x1, x2)〉 〈Φn (x1, x2)| , (5)

with the subscripts indicating the electron space. The in-
dex n is discrete for negative energies and continuous for
positive energies.

2.1 The close-coupling equations

The CC equations one gets upon inserting the eigenfunc-
tions expansion are

∑ ∫

n

(K0δmn + Vmn) fn = (E − εm)fm, (6)

where

Vmn = 〈Φm|V |Φn〉 ,

V = V0 + V01 + V02 + (E − H) (P01 + P02) . (7)

The CC equations may be written more compactly as
(
G−1

0 (E) − V (E)
) |f〉 = 0, (8)

where G0 is the operator with matrix elements

(G0 (E))mn = δmn (E − εm − K0)
−1 , (9)

and |f〉 is the column vector whose components are the fn.

2.2 Lippmann-Schwinger forms

An alternative approach is to solve the coupled equations
for the fn in differential form is to use the integral form
one derives by using the Green’s functions to obtain a
Lippmann-Schwinger (LS) equation. The LS equation for
the system is

|fn〉 = |n�kn〉 + G0(E(+))V |fn〉, (10)

and |n�kn〉m ≡ δmnΦn|�kn〉 is the incident-channel asymp-
totic state functions. We adopt the Green’s func-
tion G0(E(+)) which ensures outgoing spherical-wave
boundary conditions. In practice, it is more useful to use a
LS equation for the T -matrix operator which we formally
define by

|fn〉 = [1 + G0(E(+))T (E(+))]|n�kn〉. (11)

It is easy to check that the LS equation for T -matrix
becomes

T (E(+)) = V (E) + V (E)G0(E(+))T (E(+)). (12)

The momentum-space matrix elements of the T -operator
are

〈m�pm|T (E(+))|n�pn〉 = 〈�pm|Tmn(E(+))|�pn〉. (13)

In order to solve the integral equation the momentum �pm,
�pn are allowed to take on all possible values. The scattering
amplitudes are derived from the on-shell amplitudes for
which �pn = �kn and εn + (1/2)k2

n = εm + (1/2)k2
m = E.

Though we have shown that one can compute reliable
amplitudes for smallish target sets using the integral equa-
tion for the T -matrix it is annoying that the half-shell
amplitudes diverge. This problem was illustrated for the
helium target by Stelbovics and Berge [13,14]. For larger
target sets (N > 15) numerical instabilities begin to ap-
pear even for the on-shell amplitudes as the reciprocal con-
dition numbers keep decreasing with the increasing num-
ber of homogeneous solutions. It is therefore important
in large-scale models (such as Bray and Stelbovics [9]) to
realize that one can formulate a set of integral equations
which have no solutions to the homogeneous equation for
scattering energies. The criterion to apply is the relation

〈Φm | fn〉 = (−1)S 〈Φn | fm〉 , n, m = 1, ..., N. (14)

This identity is a result of applying the symmetry property
of the wave functions to its CC expansion. This relation
is generally valid for finite target expansions, including
those containing pseudostates. Its crucial importance in
the scattering theory is that terms of the type 〈Φm | fn〉
occur in the exchange part of the potential V defined in
equation (7). Therefore we are at liberty to modify the
CC equations with considerable generality. The result of
applying the new symmetry condition liberally is to mod-
ify the form of the exchange potential to the extent that
there are no homogeneous solutions in the new forms LS
equations [13,14].

2.3 Expansion of the helium target wave functions

We do not wish to repeat here most of the technical detail
given earlier [12]. In this sub section we summaries our
method. Firstly, we must decide on the method of calcu-
lating structure of the helium target ground and excited
states. We have written a general configuration interac-
tion program which diagonalizes the helium Hamiltonian
in the anti-symmetrized two-electron basis, where the ra-
dial part of the single-particle functions φnl are taken to
be the non-orthogonal Laguerre-L2 basis

φnl (r) = (λlr)
l+1 exp(−λlr/2)L2l+1

n (λlr) , (15)

and where the L2l+1
n (λlr) are the associated Laguerre

polynomials, λl is the interaction parameter and n ranges
from 1 to the basis size N .

The target Hamiltonian HT is

HT = H1 + H2 + V12, (16)

where
Hi = Ki + Vi = −1

2
∇2

i −
Z

ri
, (17)

for i = 1, 2, is the one-electron Hamiltonian of the He+ ion
(Z = 2), and

V12 =
1

r12
, (18)
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is the electron-electron potential. Atomic units (a.u.) are
assumed throughout.

Whereas the above Hamiltonian formalism is general
and includes two-electron excitation, in practice we have
found that it is sufficient to make the frozen-core ap-
proximation, where one of the electrons is in a fixed or-
bital while the second electron is described by a set of
independent L2 functions, thus permitting it to span the
discrete and continuum excitations, in which all config-
urations have one of the electrons occupying the lowest
orbital. The resulting target states Φ (x1, x2), where x
is used to denote both the spatial and spin coordinates,
satisfy

〈Φm| − 1
2
∇2

1 −
Z

r1
− εnα |Φn〉 = 0, (19)

in order to get a good description of the He+ ion state,
where εnα is the energy associated with the 1s state of
He+ ion. The excitation states for Φ (x1, x2) can be ob-
tained by solving the equation

〈Φm| − 1
2
∇2

2 −
Z

r2
+

1
r12

− εnβ
|Φn〉 = 0, (20)

where εnβ
is the energy associated with the excitation

states of the helium atom.
After diagonalization of the ground and excitation

states Hamiltonian, equations (19) and (20) can be writ-
ten as the resulting three-term recurrence relations are
special case of the Pollaczek polynomials which are set
of orthogonal polynomials having a non-empty contin-
uous spectrum in addition to an infinite discrete spec-
trum. The three-term recurrence relations of the Pollaczek
polynomials have complied with the positivity condition.
These results, known as Favard’s theorem, can be found
in Kartono et al. [15]. The behavior of the non-orthogonal
Laguerre-L2 basis function in equation (15) is oscillations
and dependent upon the number of basis size N and in-
teraction parameter λl. It is therefore the convergence of
the resulting eigenvalues in equations (19) and (20) are
dependent upon a number of the basis size N and inter-
action parameter λl. In order to get a good description of
the ground and excitation states, we determine the inter-
action parameter λl from the positivity condition.

In our work we simplify the problem by using the
frozen-core model, in which all configurations have one
of the electrons occupying the lowest orbital. In order to
get a good description of the ground states we take λ0 = 4
for n = 1. This choice generates the He+ 1s orbital, which
allows us to take into account short-range correlations in
the ground state, as well as being suitable for obtaining an
accurate representation of excited discrete and continuum
states. To obtain good nS excited states we take λ0 = 0.93
(triplet and singlet) for n > 1. For nP excited states we
takes λ1= 0.72 (triplet) and λ1= 0.73 (singlet), and for nD
excited states we take λ2 = 0.62 (triplet) and λ2 = 0.63
(singlet).

The configuration interaction coefficients C
(αβ)
Ni are

given by

(
C

(αβ)
Ni

)2

=
22l

π

λl(
1 − X

(αβ)
Ni

)W
(αβ)
Ni , (21)

where the notations α and β are used to denote the first
and second electron and WNi are the associated quadra-
ture weights of Gaussian quadrature based Pollaczek poly-
nomials which are given by

W
(αβ)
Ni =

πΓ (N + 2l + 1)
22lΓ (N + 1)

1

P l+1
N−1

(
X

(αβ)
Ni

) d

dx
P l

N

(
X

(αβ)
Ni

) .

(22)

2.4 Solving the coupled Lippmann-Schwinger
equations

This rearrangement is such that the asymptotic (large r0)
Hamiltonian is K0 + HT , and this will be used to gener-
ate the Green’s functions and boundary conditions for the
total wave functions

lim
r0→∞Ψ (x0, x1, x2) = χ (σ) exp

(
i�ki · �r0

)
Φi (x1, x2) ,

(23)
where �ki is the incident projectile momentum and Φi is the
initial target state. We define the coupled LS equation for
the T -matrix is
〈
�k

(−)
f Φf

∣∣∣ T
∣∣∣Φi

�k
(+)
i

〉
=

〈
�k

(−)
f Φf

∣∣∣ V
∣∣∣Φi

�k
(+)
i

〉

+
∑ ∫

n

∫

k

d3k

〈
�k

(−)
f Φf

∣∣∣ V
∣∣∣Φn

�k
〉 〈

�kΦn

∣∣∣ T
∣∣∣Φi

�k
(+)
i

〉

E(+) − εn − 1
2k2

,

(24)

where the projectile waves (discrete or continuous)
∣∣∣�k(±)

〉

satisfy (
ε
(±)
k − K0

) ∣∣∣�k(±)
〉

= 0. (25)

The on-shell momenta εk = k2
n

/
2 are obtained from

E − εn − k2
n

/
2 = 0, (26)

and exist only for open channels n such that E = εi −
k2

i

/
2 > εn.
In practice no numerical method for solving the cou-

pled T -matrix equations in the form (24) has yet been
implemented. The difficulty is that in order to solve this
integral equation it must be closed by allowing the index i
and f to run over the same complete range as n, which
leads to singular V -matrix elements whenever i, f and n
are in the continuum.

The approach that is taken in this work is to di-
agonalize the helium target Hamiltonian in a set of
non-orthogonal Laguerre-L2 basis function which when
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extended to completeness form a basis for the target
Hilbert space. The use of non-orthogonal Laguerre-L2 ba-
sis function eliminates the problem of singular continuum-
continuum V -matrix elements. Also most importantly,
with a known basis the convergence of the expansions can
be studied in a systematic manner with increasing number
of basis functions.

We introduce, in Section 2.3, a finite set of N square-
integrable states

∣∣ΦN
n

〉
which satisfy

〈
ΦN

m

∣∣HT

∣∣ΦN
n

〉
= εN

n
δmn, (27)

and have the property

∑ ∫

n

Φn (x1, x2) fn (x0) = lim
N→∞

N∑

n=1

ΦN
n (x1, x2) fN

n (x0) .

(28)
With these definitions, the sum and integral in (5) and the
LS equation (24) become a single sum over N , with the
target states and energies being replaced by

∣∣ΦN
n

〉
and εN

n ,
respectively. So instead of I, we define

I =
N∑

n=1

∣∣ΦN
n (x1, x2)

〉 〈
ΦN

n (x1, x2)
∣∣ , (29)

and have

〈
�k

(−)
f ΦN

f

∣∣∣T
∣∣∣ΦN

i
�k

(+)
i

〉
=

〈
�k

(−)
f ΦN

f

∣∣∣ V
∣∣∣ΦN

i
�k

(+)
i

〉

+
N∑

n=1

∫

k

d3k

〈
�k

(−)
f ΦN

f

∣∣∣V
∣∣∣ΦN

n
�k
〉〈

�kΦN
n

∣∣∣ T
∣∣∣ΦN

i
�k

(+)
i

〉

E(+) − εN
n
− 1

2k2
,

(30)

where for the physical T -matrix elements of interest we
must have |Φf 〉 = |ΦN

f 〉 and |Φi〉 = |ΦN
i 〉 to sufficiently

high precision. With these definitions we have

〈
�kΦf

∣∣∣T
∣∣∣�k(+)

i Φi

〉
= lim

N→∞

〈
�kΦN

f

∣∣∣T
∣∣∣�k(+)

i ΦN
i

〉
, (31)

for the physical T -matrix elements. The projection opera-
tor I is replaced by IN in calculating the matrix elements
of V -matrix.

It is a Gaussian-type quadrature and the underlying
orthogonal polynomials are of the Pollaczek class. It can
be shown that weights of the negative energy L2 states
convergence to unity in equation (28) in the limit of
large N . This ensures that the limiting procedure (31)
gives the correct T -matrix amplitudes (24) for the transi-
tions to 1S, 2S and 2P levels.

The partial wave LS equation corresponding to (30)
for the reduced T -matrix elements are
〈
Lfk

(−)
f , fπf lfsf

∣∣∣
∣∣∣T JN

ΠS

∣∣∣
∣∣∣Lik

(+)
i , iπilisi

〉

=
〈
Lfk

(−)
f , fπf lfsf

∣∣∣
∣∣∣V JN

ΠS

∣∣∣
∣∣∣Lik

(+)
i , iπilisi

〉

+
N∑

n=1

∑

l,L

∑

k

∫ 〈
Lfk

(−)
f , fπf lfsf

∣∣∣
∣∣∣V JN

ΠS

∣∣∣
∣∣∣Lk(−), nπls

〉

×
〈
Lk(−), nπls

∣∣∣
∣∣∣T JN

ΠS

∣∣∣
∣∣∣Lik

(+)
i , iπilisi

〉

E(+) − εN
n − 1

2k2
. (32)

The method of solution of this equation is identical to the
CCC method for hydrogen target [9].

3 Numerical results

In this work, two sources of uncertainty occur in
our systematic numerical problems, arising respectively
from (i) inherent approximations in the numerical meth-
ods used, often called truncation errors, and (ii) approxi-
mations in the machine evaluation of the results due to the
limited accuracy with which numbers are stored and ma-
nipulated by computer, known as round-off errors. Both
sources of error can be minimized by using careful nu-
merical techniques. Accordingly, we determined the target
helium-atom spectrum from the roots of the three-term
recurrence relation of the Pollaczek polynomials by syn-
thetic division method with the Newton-Raphson method
to get a new approximation from an initial guess. The new
approximation is repeated, to get a still better approxima-
tion to the root. This continues until successive values of
the approximate root differ by less than a prescribed small
epsilon (ε ≈ 10−8) which controls the allowable error in
the root or until the Pollaczek polynomials becomes less
than some prescribed small value (≈10−8).

The convergence of the associated quadrature weights
of the Gaussian quadrature based Pollaczek polynomials
and the configuration interaction coefficients of the he-
lium wave functions are determined by the roots of the
three-term recurrence relation of the Pollaczek polynomi-
als. Besides these roots, recurrence relation formula pro-
vides a powerful algorithm for performing numerical calcu-
lations. When a recurrence process of increasing index n
is unstable, mention must be made of a refinement due
to Miller method (see for example in Abramowitz and
Stegun [16]) which enables a recurrence process of decreas-
ing n (which will be called backward recurrence). For the
Pollaczek polynomial, if the modulus of root variable is
greater than 1, one will have the unstable process for the
large n due to round off errors of the computer. Using
Miller (backward recurrence) method, one can perform
the numerical calculation without any knowledge of start-
ing values for a large n. The most convenient way is to
choose the value of the polynomial at large n as zero and
n − 1 as 1 and to perform a decreasing −n process un-
til one reaches the n = 2. The next step is to divide the
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backward recurrence value n = 2 by that the forward re-
currence to get the constant multiplier. To ensure that
the starting value of the index n is large enough, the lat-
ter step is repeated for n = 3. If both constant multipliers
are same, the index n was chosen larger enough, otherwise
one the index n is large enough and the correct values of
the polynomial can be recovered simply by multiplying
the backward recurrence values by constant multiplier.

In order to solve the fundamental system (32) one must
approximate the integration over the electron momentum
by a numerical integration and close the system by fix-
ing all the momentum variables to be restricted to the
quadrature. Continuation to other momentum may be ef-
fected by using an interpolation of the grid-point solution
through the integral equation (32). The quadrature rule
must be such that for an arbitrary function F (x), we may
replace

∫ ∞

0

dk
k2F (x)

E − εN
n − 1

2k2
≈

N∑

j=1

Wn
j kn

j F
(
kn

j

)
, (33)

where the weights Wn
j contain Gaussian-type weights as

well as the Green’s function. There are a number of suit-
able ways to choose the weights Wn

j and the corresponding
knots kn

j . There are a number of difficulties that need to
be addressed. The quadrature rule must be able to han-
dle the singularity, which varies in position with channel.
We do this taking an even number of Gaussian points in
an interval which is symmetric about the singularity. This
requires us to allow the Wn

j and kn
j be different in each

channel, as implied by the superscript n. In practice we
take N to be the same for each channel n. To determine
approximately how many quadrature points are necessary
we check that the identity

∫ ∞

0

dk
〈
ΦN

n

∣∣ k
〉 〈

k
∣∣ ΦN

n

〉 ≈ 1, (34)

is satisfied for each n = 1 to the non-orthogonal
Laguerre-L2 basis size N .

The target states cannot all be included in any practi-
cal implementation of the CC equations. A pragmatic way
to approach a calculation is to include the effects of the
target states which are liable to be most important, for ex-
ample in the helium target to choose just the nS and nP
(n = 1, 2) levels. Unfortunately it has been observed that
such expansions are inadequate at all but the lowest ener-
gies; there is considerable evidence that the coupling to all
open channels must be included in some way. Above ion-
ization threshold this means that allowance for coupling
to continuum channels must be made. It is therefore our
tests of this approximation for low energy elastic scatter-
ing require few expansion states. We achieve convergence
using a maximum of 80 channels and couples a total of
25 states consisting of 71S, 63S, 61P and 63P, denoted by
PSCC (25). To simplify convergence studies, in the most
difficult intermediate energy region, we present at most
two calculations, the PSCC (25) and PSCC (37). For in-
termediate, require many more states. Here we include a
maximum of 120 channels and couples a total of 37 states

 

 

Fig. 1. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 5 eV. The present calcula-
tion is denoted by PSCC, and is obtained using 25 states in
the CC formalism. The calculations denoted by CCC are due
to Fursa and Bray [10]. The measurements are due to Brunger
et al. [17] and Register et al. [18].

consisting of 71S, 63S, 61P, 63P, 31D, 33D, 31F and 33F,
denoted by PSCC (37). For large bases used calculations
are close to the limit of our desk-top workstation compu-
tational resources.

In this work it is our aim to demonstrate that the
PSCC method is able to provide a relatively accurate de-
scription of electron-helium scattering at projectile ener-
gies ranging from low to intermediate. As discussed, we
introduce the approximation of treating the helium target
by the frozen-core model, where we restrict one of the elec-
trons to be the 1s He+ orbital. The frozen-core model ap-
proximation reduces convergence studies to treating only
one-electron excitation.

Elastic electron-helium scattering is well understood
experimentally and theoretically and has been used ex-
tensively for calibration purposes in various electron-
scattering applications. Therefore, we begin the presen-
tation of differential cross-sections by starting with low
to intermediate energy elastic cross-sections. The reported
data set of elastic differential and total cross-sections given
by Register et al. [17] at an impact energy range of 5 to
200 eV are good agreement with the more recent study by
Brunger et al. [18] (1.5 to 50 eV). Therefore, the results
of the experiments of Register et al. [17] (± 5 to 7% er-
ror bars) and Brunger et al. [18] (± 3.5 to 5% error bars)
are presented for comparison in this work. For theory, the
calculation results of Fursa and Bray [10] and Nesbet [19]
are presented for comparison in this work. The CCC cross-
sections being chosen because of established accuracy of
this technique over a wide range of states and energies.
In Figures 1 to 7, we present the elastic differential cross-
sections the 11S state calculated by the PSCC method for
electron-helium scattering on the ground state at a range
of projectile energies of 5 to 50 eV. These are compared
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Fig. 2. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 12 eV. The present calcu-
lation is denoted by PSCC, and is obtained using 25 states
in the CC formalism. The calculations denoted by variational
method are due to Nesbet [19]. The measurements are due to
Register et al. [18].

Fig. 3. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 18 eV. The present calcu-
lation is denoted by PSCC, and is obtained using 25 states in
the CC formalism. The calculations denoted by CCC are due
to Fursa and Bray [10]. The measurements are due to Brunger
et al. [17] and Register et al. [18].

with some of the available experiments and theories. From
the figures, we see that there is essentially complete qual-
itative agreement between the PSCC calculations and ex-
periments. The difference between the PSCC (37) and
CCC calculations (5 to 15% error estimates) are predomi-
nantly due to the inclusion of the different basis size in the
CC formalism. While the error estimates between PSCC
(25) and PSCC (37) are 5 to 10%. The convergence of
present calculations is not good agreement with experi-

Fig. 4. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 20 eV. The present calcu-
lation is denoted by PSCC, and is obtained using 25 states in
the CC formalism. The calculations denoted by CCC are due
to Fursa and Bray [10]. The measurements are due to Brunger
et al. [17] and Register et al. [18].

Fig. 5. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 30 eV. The present cal-
culation is denoted by PSCC, and is obtained using 25 and
37 states in the CC formalism. The calculations denoted by
CCC are due to Fursa and Bray [10]. The measurements are
due to Brunger et al. [17] and Register et al. [18].

ments of Brunger et al. [18] at an impact energy range of
30 to 50 eV, particularly at the forward angles.

We next look at the 21S and 23S differential cross-
sections for 30 to 50 eV electron-impact excitation of
helium. These are given in Figures 8 to 13. Once more
convergence is very good and the PSCC (37) results
are in good agreement with the experiments of Trajmar
et al. [20] and Truhlar et al. [21] (±19 to 20% error
bars), but the PSSC (25) results are not. We note one
exception to this at the forward and backward angles for
the 21S and 23S excitations, where the PSCC method is
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Fig. 6. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 40 eV. The present cal-
culation is denoted by PSCC, and is obtained using 25 and
37 states in the CC formalism. The calculations denoted by
CCC are due to Fursa and Bray [10]. The measurements are
due to Brunger et al. [17] and Register et al. [18].

Fig. 7. Elastic differential cross-sections for electron-helium
scattering at a projectile energy of 50 eV. The present cal-
culation is denoted by PSCC, and is obtained using 25 and
37 states in the CC formalism. The calculations denoted by
CCC are due to Fursa and Bray [10]. The measurements are
due to Brunger et al. [17] and Register et al. [18].

considerably below the measurements of Trajmar et al.
[20] and Truhlar et al. [21]. To examine convergence stud-
ies in the PSCC method, we presented the differential
cross-sections for 21P and 23P at an impact energy range
of 40 eV. These are given in Figures 14 and 15. Conclu-
sions are much the same as for an impact energy range
of 30 to 50 eV. In case of the 21S and 23S differential
cross-sections for 30 to 50 eV electron-impact excitation
of helium, the discrepancy between the PSCC (37) and
CCC calculations is 5 to 15% (error estimates). While the
error estimates between PSCC (25) and PSCC (37) are 5
to 15%. The convergence of the differential cross-sections
is affected by the convergence of the target helium-atom

Fig. 8. The 21S differential cross-sections for electron-helium
scattering at a projectile energy of 30 eV. The present cal-
culation is denoted by PSCC, and is obtained using 25 and
37 states in the CC formalism. The measurements are due to
Trajmar et al. [20]. The calculations denoted by CCC are due
to Fursa and Bray [10].

Fig. 9. The 23S differential cross-sections for electron-helium
scattering at a projectile energy of 30 eV. The present cal-
culation is denoted by PSCC, and is obtained using 25 and
37 states in the CC formalism. The measurements are due to
Trajmar et al. [20]. The calculations denoted by CCC are due
to Fursa and Bray [10].

spectrum for the N -dimensional subspace formed from the
first N non-orthogonal Laguerre-L2 basis functions. For
example, we show the spectrum for case of λl = 0.93 and
varying N (see Refs. [12,15]). The negative-energy levels
converge, with increasing N , to the true bound states. The
positive-energy states do not converge but provide a dense
covering of the continuous spectrum in the limit N → ∞.
The expanding nature of the spectrum for positive en-
ergies is due to the fact that the roots of the Pollaczek
polynomials are determined in the variable X rather than
energy and in that variable they are regularly spaced in
the interval X ∈ [−1, 1].
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Fig. 10. The 21S differential cross-sections for electron-helium
scattering at a projectile energy of 40 eV. The present calcula-
tion is denoted by PSCC, and is obtained using 25 and 37 states
in the CC formalism. The measurements are due to Trajmar
et al. [20]. The calculations denoted by CCC are due to Fursa
and Bray [10].

Fig. 11. The 23S differential cross-sections for electron-helium
scattering at a projectile energy of 40 eV. The present calcula-
tion is denoted by PSCC, and is obtained using 25 and 37 states
in the CC formalism. The measurements are due to Trajmar
et al. [20]. The calculations denoted by CCC are due to Fursa
and Bray [10].

The total cross-sections are given in Table 1. Upon ex-
amination of Table 1 we see generally good agreement with
available measurements, though on occasion there are sig-
nificant discrepancies. Most encouraging is the good agree-
ment at all energies with the measurements of the total
cross-sections, where the error estimates are very small.

4 Conclusions and future work

Our aim in this paper has been to develop a framework for
the solution of the CC equations using the non-orthogonal
Laguerre-L2 basis expansions for the helium atom tar-

Fig. 12. The 21S differential cross-sections for electron-helium
scattering at a projectile energy of 50 eV. The present calcula-
tion is denoted by PSCC, and is obtained using 25 and 37 states
in the CC formalism. The measurements are due to Trajmar
et al. [20]. The calculations denoted by CCC are due to Fursa
and Bray [10].

Fig. 13. The 23S differential cross-sections for electron-helium
scattering at a projectile energy of 50 eV. The present calcula-
tion is denoted by PSCC, and is obtained using 25 and 37 states
in the CC formalism. The measurements are due to Trajmar
et al. [20]. The calculations denoted by CCC are due to Fursa
and Bray [10].

get, which can be increased to arbitrary basis size, hence
enabling overall convergence of the differential and to-
tal cross-sections to be studied systematically. The meth-
ods developed are numerically stable and our calculations
have been limited only by the local computing facilities
available.

Generally, we have demonstrated that the PSCC
method using a non-orthogonal Laguerre-L2 basis func-
tion for the calculations of electron-helium scattering is
able to obtain qualitative, and often quantitative, agree-
ment with measurements of differential and total cross-
sections for projectile energies ranging from 5 to 50 eV.
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Table 1. Total cross-sections (10−16 cm2) for 5 to 50 eV electrons scattering on the ground state of helium. The calculations
are denoted by CCC are due to Fursa and Bray [10]. The experimental estimates are due to Register et al. [17] (3% error) and
Brunger et al. [18] (1% error).

Ec (eV) PSCC (37) CCC [10] Register et al. [17] Brunger et al. [18]

5 5.385 - 5.25 ± 0.16 5.32 ± 0.04

12 4.109 - 3.96 ± 0.12 -

18 3.274 - 3.22 ± 0.10 3.34 ± 0.06

20 3.034 - 3.03 ± 0.09 2.98 ± 0.01

30 2.236 2.47 2.34 ± 0.07 2.30 ± 0.01

40 1.890 2.03 1.94 ± 0.06 1.67 ± 0.08

50 1.571 1.76 1.69 ± 0.05 1.47 ± 0.01

Fig. 14. The 21P differential cross-sections for electron-helium
scattering at a projectile energy of 40 eV. The present cal-
culation is denoted by PSCC, and is obtained using 25 and
37 states in the CC formalism. The measurements are due to
Truhlar et al. [21]. The calculations denoted by CCC are due
to Fursa and Bray [10].

We have established convergent differential and total
cross-sections for elastic and inelastic scattering to the nS
and nP (n ≤ 2) levels over a range of projectile energies of
5 to 50 eV. As there is difference between the PSCC (37)
and PSCC (25) calculations at the projectile energies of
30 to 50 eV for the differential cross-sections, convergence
is obtained by having 31D, 33D, 31F and 33F states in ex-
pansions. If we concentrate only on the elastic scattering
at the projectile energies of 5 to 20 eV, then by dropping F
and maybe most D states, we can probably provide more
accurate elastic cross-sections, still using our local com-
putational facilities. There is not good agreement with
experiments at an impact energy range of 30 to 50 eV,
particularly at the forward and backward angles. As we
found earlier for the target helium-atom states, once rea-
sonable accuracy in the target wave functions is obtained,
it becomes more important to treat accurately the scatter-
ing part of the calculation. It suggests that slightly large
bases used calculations are necessary to get better accu-
racy.

Fig. 15. The 23P differential cross-sections for electron-helium
scattering at a projectile energy of 40 eV. The present calcula-
tion is denoted by PSCC, and is obtained using 25 and 37 states
in the CC formalism. The measurements are due to Trajmar
et al. [20]. The calculations denoted by CCC are due to Fursa
and Bray [10].

At a later stage, we will present the calculations of the
differential, integrated and total cross-sections for large
bases used. To examine convergences studies, in the most
difficult intermediate energy region, we will also present
the convergence of the PSCC method with the inclusion
of G states and many continuum states.
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